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DETAILED COMPUTATIONAL PROCEDURE FOR DESIGN OF CASCADE BLADES WITH PRE-
SCRIBED VELOCITy DISTRIBUTIONSm cowmRESSn3m p0TENTL4L mows I

By GEOEGER. COSTELLO,ROBHHTL. Cu-was, and JOHXT. SINNEfiE, Jr.

SUMMARY

.4 detaileddep-bg-step computational outline ig presentedfor
the design of tuodimensional cascadebladesbaring a prescribed
A&I di~tributionon the bladein a potential$o w of the USUQ1
compresm”b[e$uid. Thi~ outline i~ based on the assumption
thaf the magnitude of the relocify in thejlow of the usual com-
premible nonrkcous jiuid is proportional to the mugnitude of
the re[ocify in thejlo w of a compressible nonviscousjtuid m“th
linear premure-rolume relation. The compufafiotialprocedure
includes sereral ZIMY8of adjwfing the prescn”bedrehcify to saf-
isfy restrictions imposed by the method. Tables of coejicienfs
are @“tenfor eraluafing the nece~ary integrals, including fhe
deferminafion of the harmonic conjugatefunction. .it’umerical
e.ramplesare included.

INTRODUCTION

A method for computing blade profiks with prescribed
velocity distributions based on the assumption that the pres-
sure=rolume relation is linear is presented in reference 1.
The method uses the prescribed velocity distribution and
compatible free-stream conditions to determine a mapping
function that transforms an incomprcdie flow about the
unit circle into an ~xact compreasible flow, with linear pres-
sure--rohune relation? about a cascade of blades having tht)
desired velocity distribution.

In order to apply this method to the design of a cascade
with a given velocity distribution and fret+stream conditions
in a flow of an “actual” fluid (the USURIcomp-ible non-
viscous ffuid), the reIation between the actutd fluid and the
fluid with the linear pressure -volume relation must be approx-
imated so that the required velocity distribution and free-
stram conditions for the second fluid may be determined.
In this investigation, -irbich was made at the NK~ Lewis
laboratory, the magnitudes of the velocities in the two fluids
are assumed to be proportional and the constant of propor-
tionality is determined by the continuity equation using the
same upstream and downstream flow tmgks for the two fluids.

By use of this reIation, a computational procedure was
deveIoped to obtain the blade profile with a minimum of
effort. The procedure, presented herein, includes the adjust-
ment of the prescribed -relocity distribution to satisfy the
restrictions on the mapping function and the numericaI
computation of the harmonic conjugate funct ion.

SYMBOLS

The foI.Iowing symbols are used in this report:
A, B, CS,. . .

CC,D
a, b, c
C(e”)
d
H(el@)

fi(e”)
Im
K(8)

ii(e)
k
.31
n

Q(s)

!z

i
Re
A(ReH)
r
s

u(e)
Z=x+iy

a

r

-1’
6

constants

constants
function of 6 defined by equation (18)
spacing of cascade blades
function of 6

final values of .H(e”)
irnaef$nary part
distorted vebcity Wined by equation (22)

modi6ed K(6)
constant detwminwl by range of potential
lIach number
constant determined by trailing-edge angle of

bIade
dimensions velocity on blade in direction of

increasings
magnitude of dimensionless velocity (ratio of

velocity to stagnation veIocity of sound) for
flow with Iinear prewme-volume relation

fired vaIue of q after modifhtion of ReH(eu)
red part
change in ReH(6fe)
ratio of velocities (detemuhed by squat ion (4))
arc length aIong bIade measured counterclock-

wise from tail (figs. 1 and 2)
arc Iength along final blade shape
magnitude of dimensionIe= velocity (ratio of

velocity to stagnation velocity of sound)
for actual fluid

velocity on unit circIe (iucompressibIe flow)
complex variable in cascade plane

angle of velocity in compressible flow (meas-
ured from positive x-axis)

circulation (positive counterclockwise)

ratio of specfic heats

difference between Re H(e*) and pmabda at
half-interval point

irduding trailing-edge angle of blade

circIe angIe (incompressible flow pIane) pos-
itive counterclockwise

I @a-sedes NACA ‘rN-2$%1,“IHaEed Computathal Pmcedm_eforD- MC- BWes‘NMPHM Vetitg DM’ibutbns h CamwessibIePotenthl Flows”by (lax-se R.
CoateIlo,Robert L. Cummfngs,and JolroT. Sbmette,Jr., 19S1.
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auxiliary function defined by equmtlion (15)
density
variable of intlegrat ion
velocity potential

comprewible flow
incompressible flow
leading edge (nose)
trrailing edge (tail)
upstream
clownstrenm

RELATION BETWEEN FLOWS

In the present problem of cksigning a cascade, the pre-
scribed conditions me the upstream velocit,y uleial, the
downstream velocity U#{%, Rnd the magnitude of the di-
mensionless velocit..y on the black as n func Lion of the Hrc
Iength U=U(S) (see figs. 1 and 2). The upstream and down-
stream veIocit,ies are MM cd by the continuity equation

Consequently, only three of the qunntitks u,, w, al, and
~a may be assigned, and the fourth is dckrmined by equa-
tion (1).
b In u~fiizing the method of refwence I to design the cas-

cade, the prescribed conditions me empIo yod to determine
the upstrettm and downskrcam -reIocit ies and the velocity
distribution on the Made for the fluid with the liuwr
prw.sure-volume relation by assuming that the magnitudes
of the veIocit iw for the two flows are proport iontd; thut is,
&i. q=~ (2)
The constant of proportionality is dvtennined from tlw
addit ioual assumption that. the flows have the sume free-
stream directions by substihltion of vqurttion (2) in the
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FIGUREL-Cawdc In z-plane.
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FIGURE2.—PrcsorIMdwhclty dlstrIbut[onon awwle Mwk

continuity relation for the flow with the linmr prmsurrw
volume relation:

(4) ““:

.4

Hwce, the upstream velocity qlefal, the (Iownst ream W- ,
lority Igiaz, and the velocity distribution on [110 I-MC j
q=q(s) ,are now detwminwl for the flo}v with tlw lim’ar
prwisurc:yolume relation.

.i

Othm approximations to the relation 1A wecn lhr Lwo ‘.
flows could be used but, with the prmcut CWWIC intw-
pretatioii; the upstreaiu and downstream flow zmgks and tlw
spacing ‘we the same for the two flows. The two &msity-
velocity rclnt ions me fdso in good agreement, as shown in
fig~e 3 ~]:ere tbe “(l(~nsity-ve]o~it.y rc+lalimg tire plOltul for

ul=0.700 and w=O.500. Whn the upstwm und down-
stream velocities tire equal, the deusity-wlocity rclatiotl, m
given “by this intwpretation, is the sftmc m the density-

velocity” relation h the” KfimA1-Tsien approximation.

‘u

FIGURES.—fhmwrhon of densitg-vek+t Y mlat [om forMI-O.W and M=O. S03.
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NUMERICAL PROCEDURE

After the free-stream conditions and relocity distribution
on the blade are determined for the flow with the linear
pressure--rohune reIat ion, the method of reference 1 is used
to obtain the bIade shape. In this method, the gi-ren
r?onditions are usecI to select an incompressible flow about
the unit circle and to determine the mapping function that
transforms this flow into a comprwsibIe flow with the circ~e
transforming into the &sired Made. ~ detaikwi procedure-
for determining the circle flow and the mapping are given in
the following pwagmphs.

FLOWIN CIRCLEPLAXE

The vdocity potentitd p.(s) and the circulation r. on the
blade are obtained by integrating the prescribed velocity
distribution q($). For this purpose, it is convenient to
define Q(s) by

Q(s) =–q(s) 0<8<$.

(@= q(s) 8=<8<2T

then

r
#C&YJ= ‘ Q({) d~ (5)

,0

(6)

i

/’
i#

r
a

2X

where the total arc length h~~ been taken equaI to %.
These integrals are e-raluated by Simpson’s rule using suf-
ficient points so as to obta”m accurate values of w,(s). The
values of PC(8) shoukl be plotted on the graph with Q(8)
(fig. 4) in order to obtain q easily as a function of the circk
angIe Iater in the computation. The spacing d of the
cascade is given by

d=
r. ,

g, sin al—~z @[l al
(7)

,’

From equation (35) of reference 1, th$ incompre=ibk
potential function for points on the unit circle may be
writ ten

,.

Pt(@= —2 Re .4ttird1-l ~+(Im .4+Im flttm-’-.+
.

(Im A-Ire B) ttm-’~k+ D (0.

where D is chosen to nmke the pot wit ial zero at the tail
sin 0

st~~nation point 81, the W@ convention is —~<tan-l —
sinhT

<~, and tan-l ~ is taken iu the wue quadrant aml the

same clirection as t?. ThP values of RP .4, Irn .4, Re B, and
Im B are determined from the free+ tream conditions rmd
spnci~w by

Re .4=q’d ‘cOsal’
%,-

(9}

The -due of the consttint k is determined by the condition
that the potential range on the circk is equaI to the potentird
range on the blaile:

p.(2T) —%(s”,)= Y@, +27) —$@.) (13)

The proper value of k is computed by assuming a value fork
and computing the stagnation points 6’ and d=, which me
the roots of the equ~tion

sin(6+X)=
–(Ire ..+Im B) sinh k

2 Re .4 SIXk (14)

I w-here L is given by

~=taU_l (Irn A–Ire B) tnnh k
2 Re A

FIUUEEA-Vebclty and potentialdktrtbutirmfir fluidwith hrwnrpmsmre+oluruerelation.
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and then determining the value of pt(6j+2r) —pi(&). This
process is repeated for dillerent assumed values of k to OL
tain a plot of pt(O’+27r)-Pf(O=) as a function of ii. The value of
k satief ying equation (13) is then obtained by interpolation.
A computational outline of this process for use with a desk
calculator is given in table I, in which the usuaI cohunn op-
erations are written as lines.

W’heri k has been determined, the flow about the circle
is know~ with the value of the potential on the circle given
by equation (8) and the velocity on the circle given by

A computational outline for o(e) and p{(8) based on 80 points
is given in table 11, lines 1 to 19.

DETEUMINATIONOF MAPPING WNCTION

The mapping function (equation (62), reference 1) maybe
w-rit.ten in the form

~= 4gl?–s V(69%(2COSh2k —2 COS~) $W:*-lmL’ ~+k)
de

4 gl e~ 2 cosh 2k—2 cos 28
(17)

where

gl= [2—2 cos (fit”—$]~l~e[RcC(@4)+(Zcash W-2 cm 28) Re H(w)]

“=’f+r)
+~m C(e’~+(2 cosh 2k– 2 cos 2f?)Im H(e’~

and

n=l.-:
T

where c is the trailing-edge angle of the blade in radiana.
The mapping function is completely determined when
Re C(e~, Im C(ei@),Re.H(eti), and Im H(e”]-tife known.

Determination of Z?e C(e~ and lm C(e~),—The function
~ea) is defined by equation (44) (reference 1) and may be
writ ten in the form

Hence Re C(e*) and Im C(e~) are obtained by trtkiug the real
and imaginary parts of equation (18):

[ 1
ReC(ei@)=~ (C8+ CJ+ek(C8– CJ cose+ek(& @ sin6

(19)

[ 1
ImC’(e’~=~ (C5+ CJ+ek(C6– Cd cos t9-e’(C8– Cd sin e

(20)

where

{
1 + ‘=l/R~ ek[e-~(2 cosh k–C$=hl ~

{
1+‘m,ltiB ek[e-k(2 cosh k+C,=ln ~

2 Cos 0,)]-”/2
}

The quadrants for the arc tangent terms in .C6and C6 mre s.c-
lected by considering the numerator and the denominator of
the argument as signed quantitim and choosing a quadrant
in which the sine IMs the same sign as bhc numerntor and
the cosine hm the same sign as the denomina for. For con;
veniencej these angles me taken as positive nncl t.hc resulting
vaIues of Chand Cl are changed by rnult.iplw of 2r until I(?61
and IC61are each Iess than 27.

Determination of Re H (ef@),—In order to obtain Re H (e*),
the prescribed velocity nlong the blacle must. be determined
as a function of the circle angle q= q(d). This relation is
obtained from the. equality of the potentirds at, eorrospomling
points in the two planes. Because Q(s) and p,(s) arc plo[ (cd
on the same graph (fig. 4), the magnitude of the prcscribml
velocity at a given circle angle 8 may be found direct Iy by
reading the absolute value of Q (q= IQ[) at t.hc abscissrt
where q,(s) equals the calculated vaIue of q{(d) (ttibIc II,
line 19). The prescribed velocity is thus obt~incd as a
function of the circIe angle q=g(13).

From equation (48) (reference 1)

l@)l~/2coA2k-2cos2e
K(e) [2–2 COS(Ot–byM/’

ReH(ei@)=.
2ctiA2k–2cOs2e

.,

(21)

where

K(e)=
2q(e)

1+4-
(22)

Lines 2&to 36 of tabIe H show the cletaikd cmnput at ion for
obt ainiug Re H(e”), including the cvaluat.ion of Re C’(ei#).

Adjustment of Re H(e’O) ,—Restrictiom””on the mapping
function require that Re H(e*”) satisfy the conditions

srRe H(e’~ d6= O (23)
-7

J
“ ReH(e’~sin 6 df?=O (24)

-r

f
“ Re H(ef9 cos %de= O

, —r
(25)
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These integrals are evaluated numerically (ii the manner
developed by Dr. Crlenn H. Peebles, -tthiIe at Douglas Air-
craft Co., Inc., ”in his work on isolated airfoils in incom-
pmible flows) by using a parabolic variation of Re H(eW)
between three consecutive points and integrating analyti-
mlly. The point spacing used in the exampks of this
report is an equaI spacing of 80 points (designated whole
points and numbered 0, 1, 2, . . . 79) around the circIe
beginning with point O at .9= – 180° and continuing around
the circIe at- 4.5” intervals. Ti’here Re H(eti) has large
fluctuations (usuaily in the neighborhood of the stagnation
points), the midpoints of these interwds (caUed half-points)
are also used. The coefficients for evahmting the integral in
equation (23) are the Simpson’s ruIe coefficients. The.
rcwfficients for the int e=mls in equations (24) and (25),
which are obtained by integrating analytica.lIy the product
of the parabohs and sin @or cos 6, are given in tabks III to
YI. Ti%en half-iitervaI spacing is used, it should begin and
end at even-numbered points of the original 80 points ancl
the integration coefficient to be used at the begin&g (or
ending) eyen-numbered point is one-half the sum of the
whok-point coefficient and the haIf-point coefficient at that
point.

If the values of Re H(e”) from eqmtion El) do not sati&
equations (23)} (24), and (25), the veIocity distribution
chosen is incompat ibIe with the chosen free-stream condit ioms
tmcl must be modified to make these integrals zero. The
most desirable met hod of modification will depend on the
mrtgnitude of the integrals in equations (23), (24), and (25)
and on the features of the originaI prescribed conditions that
tire to be preserved. ~~sually the original free-stream con-
ditions are retained and the velocity distribution is modi6ed.
men the integrals are Iarge, however, changing the circle
flow may be desirable in order to minimize the changes in
the essential characterktics of the origiial velocity distribu-
t ion (such as limits on ma.xinmm veIocity, diffusion rate,
HMI so forth).

lIodfication of the circle flow provides easentialIy one
nddit iond degree of freedom, as can readily be seen from
~quationa (9), (10), (11), and (12). The strength of the
singularity ies.4 and B are determined by the free-stream con-
ditions and the spacing. The range of potentisd is deter-
mined by the Iocation of the singularities, that is, by the
constant k. Only the ratio of the potential range to the
spacing is important, however, because changing both to-
get her mere~y changes the dimensions of the cascade by a
SC& factor. This additional degree of freedom maybe con-
venient~y represented by the ratio of arc lengtk~ of the upper
tind lower surfaces. Consequently, this ratio has a large in-
fluence on the size of the integrals in equations (23), (24),
and [25). The selection of the ratio may be based on the
nitio for a blade ha~ing a simiIar velocity distribution; or,
in some cases, it may be advantageous to try severrd ratios
of arc lengths and roughly approximate the integrals using
only 20 points and from these resuhs select the proper ratio
to minimize these integrals. The flnaI adjustment to reduce

these integmds to zero may then be obtained with a bed
circle flow by adjustment of Re H(e~.

T’i%enadjustments are being made in Re H(es), the change
in profde arc length and profile velocity g(fl) produced by
these adjustments must be considered. The local arc length
ds corresponding to dO viill be decreased in the same ratio
that the docity is increased in order to maintain the same
potentiaI. The change in arc Iength is automat icaLIy ac-
counted for in the fmd integration for the bIade coordinates. _
The change in the Yelocity produced by changing Re H(e”)
by an amount A(Re H) is indicated by the change in the
“distorted” -reIocity K(6), which is related to q(t?) b~ equ~-
tiort (22) (~-. 5). The changed ~alue, denoted by K(8),is_.
given by

E(e)= ~(~g-ecO*z-2cmmA@t H, (26)

llaking a change in Re H(ew] therefore has the elfect of mul-
t iplying the distorted velocit y by a factor. This factor -raries
w-ideIy vrith the circIe angle and produces the smalkt change
in K(6) at. 6=&r or 8=0 and the largest change at 0=+-~/2.
Hence, for a given percentage change in K(6), the greatest_
values of A(Re H) occur near 8= +T or 6=0. The effect of
k on these -ialues of A(Re H) for a given ratio of fink
is shown in figure 6.

Consequently, for smaIl values of the integrals in equat ions
(23), (24), and (25), complete adjustment can frequently be
made by merely changing the sIope. of the distorted velocity
K(t)) at the stagnation points. The chang~ in the integrals
produced by this change in sIope are given by

J
“ A(ReH) dt?
-r

[
zA(Re~ sin @dti

. —r

qfe)
FIUUEE&-DIAwted vebclty K(l) = functh of de).
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where A(Re H) is determined from equation (26). These
changes in sIope are effective in eliminating or reducing
y Re H(e”) G%and J Re Zl(e”) cos t9dil” (See figs. 6 and-7.)

Another method for adjusting l?e H(ew) is to use a multi-
pliq on the entire velocity distribution; that is,

X(@)=e-0K(8)

then

‘(Rew=~ ~mh 2ka_~ ~oS 2* - ‘- ‘

and

J
“ A(ReH)d6=& - . ,.
-r

J
“ A(R~ffl sin 6 df?=O

-r

J
* A(Re H) cos 6 d6=0

-r

Changes in the sine and cosine integrals may be obtained
by using different multipliers over the upper and lower
surfaces :

fink e-’l B#<e<e.

l?(6) =K(8) e-uz ea<e<e, +2r
tb en

A@~m=2 Gosh 2::2 Cos 20” .:L?/<e<en

A(ReH)= az
2 cosh 2k–2 COS 20

% en<o<o, +27r

and

s‘A (ReH)d6=
-r ( 2 Si%l 2k ‘“-’ *I+

( 2 si% 2k ‘“”-’ i%%~~

s“A(Re H)sin8dt9=–
—r ( 4 e% k ‘Uti’-’ ‘~:-

( )4 C% k ‘a’h-’ * ;%

J
‘ A(ReH) cos 6 dt?=”
-r ( 4 S:]1 k ‘m-’ i%~+

( )4 s:h k yn-’ % ::+%

!l?hese integraLs may be easiIy evaluated because the inverse
trigonometric functions all enter into the computation of
w(t9) and have been calculated in the determination of k.

A possibihty for making small adjustments in Re H(ea) is
to use a multiplier that is a simple function of 8, such as

~(o) =~(fl) g- (~+b006 d+. il. 6’)

then
a+b cos fl+c sin6

A(lle17)=2 ~osh 2k—2 cos 213

and

J
= A(ReH)d6=-

-W

J
r A (ReH) sin 6 d6=

cr(l–t@ k)._ ;_.

-rr 2

J
= A(Re H) co; 6 d6= br (1 –tanh ,k)

-w 2ttmhk ‘ ““ ““--

Various combinations of these methods for acljustmm~ of
Re H(e~ have been used in the illustrativti examples of this
report.

After the adjustments in Re H(e@) have been made, f.h(}
final vaIues should be checked in equations (23), (24), amj
(25), as indicated in tabIc H, Iines 42,43, and 44. At this
time, l?(~) should be computed in order to det ermine whet hw

l!?(@)<2;as required by pml (d) of equation (5), rcfmmcc 1.
If l?(8) does not satisfy this ineu urditv, a clifl’cwmt modifi-. . . “,

cation of Re H(e ‘i) is necessary.

8
9f” ‘ /( 7“‘- ““”

FIGUREtL-A(ReH) 89functionof k and u& mtlo of dIStOCtIXIvch~tk @)/K@)-u.cEo.
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FmuRE7.—Product9A(RG If) m .9and A(Rc If) sfrr 9 for k_O.~ and for i?(0)/h’(t)-O.9W.
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DETAIZED COMPUTA’lTONALPROCEDURE

The fial values of Re H(e~) and ?(8) should be plotted in
order to insure that no excessive fluctuations have been
introduced. At this time, ?(6) should be compared with the
original q(t9) to make certain that the veIocity has not been
changed beyond acceptable limits. Because the potential
range is fixed, these changes -ivilI change the arc length. If
desired, ~(11)may be obtained as a function of the new arc
length % by

~(e)=~[e~)]=~(?)
and

The ralues of !# are gi-ren in table H, lime 50.

Computation of lZZIfi(e~).-~en Re fi(ei~ satisfy@ all
requirements htis been obtuined, the computation of the
conjugate function 1 mfi(ei~ is done by direct numerical
integration of Poisson’s integral

Im fi(e’$)=~
.r

z Re fi(e”) cot ~ dr
= -=

on the SO busic points using an extension of the method
dtweloped by Dr. G1enn H. Peebles. The integration is
accornplkhed by replacing .Refl(ei@) by 40 parabolas on the
S0 basic points ancl integrating analytically the product of
the parabolas and the cotangent term. The two sets of
s() coefficients so obtained for the integration are gi~en in
t tibles TX and J~II. (See appendix A for derivation.}
The set in table TTI is used for the computation of the con-
jugate at the end points of the parabchs; that is, at. the even-
numbered points O, 2, 4, . . . 7S. The set in table YHI
is used for the computation of the conjugate at the odd-
numbered points 1, 3, 5, . . . 79. Thus, to obtain lml?Z(e’~
tit. one of the basic points, for exampIe, point 7, the due of

f?~~l(ef? at this point is multiplied by the first coefficient
(U.00(IOOO)in table TH1, the next value of Rt ~(ei~ (at
poiut S) “k multiplied by the next coefficient (0.41236S),
tind so forth, and the sum of these 80 products is the desired
vahle of lnz fi(et? at that point. Hence to obtain Im ~(cf~
at t be SO points requires SO such rwcumulati~e multiplica-
t ions. This computation is done very efficiently on an elec-
tronic calculating punch using only 415 cards and taking
appro.simately 2 hcmrs, inchding the time for key punching
and ~erifying.

‘Ohm Re ~(ef~ has large fluctuations w that some of the
$0 basic intervals are divided by half-points, the preceding

vwlues of Im fi(ef~ must be corrected to take into account
the difference bet ween the values of Re ~(efq and the basic
pmabolas at these half-points. The correction to be added
to the calculation is the harmonic conjugate of these ditTer-
euces. The coefficients for computing the value of the con-
j ugate (at the SO basic points) of these differences are given
in table IX. (See appmdix B.) Tbia computation has been
arranged on two concentric disks-the coefficients are carried
by the outer disk and the differences (denoted by Q are
entered on the inner disk in the proper places (fig. 8). It is

2T24S3-S4-8
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easy to see where these differences fil make a significant
contribution to Im ~(ef~ and to obtain the contribution by
accumulat ire mult implication. This correction is then added
to the calculated results.

COMPUTATION OF BLADE COOEDISATSS

After the corrected -ralues of the conjugate have been
obtained, the blade coordinates are given by equation (17),
which for convenience of computation may be written in the
parametric form

where

gJ~=n(x+r’)+Im C’(e’9+(2 cosh 2k–

2 cos 28) Im ~(e”)- .-

These integrals are evaluated by Simpson’s rule. In order
to obtain suficient accuracy, use of at least the same number
of pints as were ~~ed in the ewduation of Re l?(e”) is
adtied. Because the values for Im fi(eiffj were calculated
at the SObasic points only, interpolation of g~(fl) is necesary
when half-points are used. The vaIues of r(8)and u(8) are
given in table H, lines 70 and 71.

EXAMPLES

Several examples have been computed to illustrate some
of the variety of conditions to which the method may be
readily applied. NO attempt has been made to pick the
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be8tvelocity distribution or to obtain the mo8tdesirableblade
shape, as to do so would lead to many considerations far
beyond the scope of the present investigation.

In thwe examples, the adjustment of the prescribed veloc-
ity ahered the arc length dightly. For uniformity, figures
9 to 12, which show the flnaI velocity distribution and blade
shape, were therefore scaled to give an arc length of 2r.

ExampIe I.—For this exampIe of a cascade blade with
low turning and a cusped trailing edge (6=0), the free-stream
conditions were taken as

%1=0.488

%=0.478

The velocitv distribution

al=170°

q= 180°

prescribed on the blade was the
veIocity dis~bution for a~ isolated Joukowski airfoil. Ad-
justments to Re H(W) altered this distribution somewhat
and the resulting bIade (which is very similar to a ifoukowsti
airfoil) and veIocity distribution are shown in figure 9.

Example Z,—For art example of an impulse-type bIade
with rounded leading and trailing edges (e= ~), the free-
stream velocities were assigned the values

Ul=o. 555 cYI=135°

ug=o. 555 a2=~250

and the prescribed velocity distribution on the bIade was
constant over most of the upper and lower surfaces with
different vahw.s on the two surfacea and varied Iinearly

x

o n z?l
.?

FIWJRE9.—FiMl velodty dfstrfbntfonand bkide sham for Exemple 1. M=o~ c.o
(euspedt.rafflngedge).

through the sttignation points. In this example, the oxprcs-
sion for r (equation (4)) is indoterminant and the value of r
was obtained by taking the limit as a~ approaches 225°.
In this example, complete adjustment of Re H(e~) was made
by multiplying the velocities on the upper and Iowcr surfam.w
by constants. The resuh,ing blade s.hapo and velocity dis-
tribution are shown in figure 10. A smaIIer nose or tail
radius of curvature could be obtained by increasing t.hc slopo
of the velocity distribution through the nose or the ttiil,
respectively.

Example 3.—The free-stream velocities chosen for this
esample were re.presentative of a compressor stage with

ul=o. 583 al=1360

U2=0. 417 a’s= 155”

In order to keep the clymges in the prescribed velocity to u
minimum, three ratios of lower surface length to upper surfticc
length of 0.95, 0.90, and 0.85 were used with the same pre-
scribed veIocity distribution (but, of course, diflerent circlv
flows) and the integrals in equations (23), (24), and (25) were
quickly approximated using only 20 points. By use of bhesc
results, a ratio that would give the smallest integrals wus
chosen (a ratio of 0.93) and the blade shape with roundw]
trailing edge (c= z) was computed in the uswd mamwr.

Y

u

/.0v

.5 -

FI~URE10.—Ffnefvelocitydfstrfbutfonaud blade shape for Exampl@2. M-O.578; i-m
(roundedtmllhg edge).
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The lhIP shape and the velocity distribution are shown in
figure 11 (a). By use of the same circle flow and a change

()in q(,@),a blade having a 10° trailing-edge angIe c=: and

similar veIocit y distribution was obtained (fig. 11 (b)).
Example 4.—In this ~xample of a higldy Ioticled cascade

bblde with a rmmdcd trailing edge (c= T), the free-strenm
vdocities m-f’re

11]=(). 579 q = 135°

The prescribed -ielocity distribution, which was similar to
the distribution on a Gritlith airfoil, had an abrupt decrease
in vaIue on the upper surface for use with suction. The
Ihide and velocity distribution me shown in figure 12 (a).
By use of the same circle flow and a change in q(0), a bhle
having a em%pedtail (~=0) and essentially the same -ieIocity
distribution was obtuined (@. 12 (b)).

DISCUSSION

Specifwation of the traiIing+dge angIe of the blade requires

that- q(s) ha-w a zero of order & at S=O and 8=2r. If the—

prescribed velocity does not go to zero in the proper manner,

w

d =3-.28

u

Fmmm 11.—FbMIvekxity WsMmthn and

Rt H(e’) w-illbe infhite at. 8=6,. Fairing Re H(e”) smoot hly
through t?= d~ and keeping the vahes finite will, howe~-er,
insure obta”~ the specified ar@e at the trding edge of the ‘-”‘“
blude. Tlw shupe of the bltide in the immediate vicinity of
this point will depend on the velocity prescribed in this
vicinky. If desired, the blade shape at the tail can easily
be modified by chmggg .lm H(ef@), which changes the angle
of the trmgent to the bIade (tlw angle in equations (27) and
(2s)). The corresponding change in Re H(efe) is cornplted

from Poisson’s integral with the constant term zero, and
the mmliiieation in the velocity is obtaimd from this change
in Re H(e@). The change in Im H(e~), denoted by A (Im H),
should be chmtm to satisfy the following conditions:

J
r A(Im H)d6=0
-r

J
r A(Im ~cos6 iif)=O

-r

J
= A(I’m H)sin Od9=0

—r

For a prescribed velocity distribution requiring only rno{l-
emt e changes, the bIade shape can be obtained in approx-
imateely 50 computing lIours using SO points and 4-decimal
accuracy. The time depends, however, on the degree of
familiarity with the method and on the extent of the pmnis-

U*=U583

v z

/.0[

.9

bkde sbfqmfor Example2. .M-O.6W.
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d“ 352 -%=,800’ ~ ~ ,.

) ,.
4 v 1[,=0.369

. y, =0.579:.:t;.

x

.,

I.(I -

2.4 .5 -“~’””’”

o ?r z%
s

(Q) ●-W (rounded tr8fIIngIX@).

Y

d=380

-., Z/zn0369

Ul” a579

x

u

/.o-

.5-

0 a f%
s

(b) ,=0 (cuspedttzflingedm),

FIOURE 12-FIrxd veIwItY distribution and blade shape for Example 4. AfI=O.~.

sibIe modification la the velocity. When several examples
have, the same free-stream c.onditione and cascade spacing,
the time is considerably reduc.d because the circle flow need
be computed ordy once.

With the calculation based on a spacing of 80 points with
half-points around the nose and the ttiil, the method gives
accurate results in all cases in whkh the parameter k is not
less than 0.10. Experience has shown that for cascacks of
moderate stagger and turning k will usualIy be greater than
0.10 when the solidity is less than 1. In examples 1, 2, 3,

and 4, ~he values of k were 0.2600, 0.1100, 0.2008, and 0.285”1
and the solidit.ies were 0.91, 1.01, 0.92, and 0.74, rcsp(’ctivcly.
In applying the method to other cases, a finer point spncing,
which woukl require new coefficients for tbe int,egrnlicms,
should be used.

,. .-

LEWTS FLIGHT l? REPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

CLEVELAND, Omo, AuguN 98, 1950
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APPEYDIX A

COEFFICIENTS FOR DETERMINING CONJUGATE FUNCTION

The coefficients for determining Im H(e”) are obtuined
by considering thr contributions of one of the parabolas to
the conjugate at one of the basic points. The contribution
1 of the (1+ l}th pmabcda through the points Re H(e%},
Re H(e%+ll, and Re H(e%~~) to the conjugate at any
point o=em is given by

I=& [~+’ [a(8–&.+J’+b(6–&+J+
*,

and h is the Ien@h of the lxisic interval. By substituting

in equation (Al) and e.xpancling in series, equation (Al) can
be integrated to give

2 ( T-lu+ T“JJ+ rJ~+ . . .)+4 (TrhL+

U’:L9+H;L5+ . . “)\

and

101

~O=-Ro=:[l-+(;~-&(;)-&(;)- ““”

ZZWF ““”1
Then /=1,

h6 hS

‘L=; &&&j-~~-425,~’O- -- “)

(
T,=–: ~+~+x+ ~hs + “ “ :

r 1S 675 S820 212,625 I)

and RI is undefined becuuse the inte@and becomes in@ite.
The final integration coefficients, denoted by .IVO,~1,

.&, . . . me obtained fmm the prececling values of R;, S1,
and T’. Ti’hen f?=is an end point of a parahoIa (m is e~en),
then

li’o= o

_!\Tl= s~

AT:= T1+ R3
. . .

hT2j-l=s2j_l
~Nu=Tu-l+Rw~l

-where A70is determined by Cauchy ’s priqcipal value.
emis a midpoint of a parabch (m k odd), then

(A2)

When
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NO=SO=O

}

The coefficients for 80 points given in talks l’H and 1’11I

N1=TO+RZ were obtained from equatiom (A2) and (AJ) using h= 2r/80.

NZ=SZ
The coefficients for other point spacings cttn be obttiimxl from

(A3) equations (A2) and (A3) by using tho prop{’r value of h.
. . .

NU_l=TZ,_s+RSj
Because of the symmetry of the coufficicnts, only h~df of
them need INIcrtlcula tPd.

hT2f=SZf

APPENDIX B

COEFFICIENTS FOR cORRECTION OF CONJUGATE

The coefficients used in the wheel correction are obtained
by determining the contribution of one of the half-point
differences to the conjugate at one of the basic points.
Denoting the contribution of the difkence. 13&~l(the C~if-
ference at 8=&~~) to the conjugate at t?= fl~ by 1, then

which, on substituting

(?,+l=f).+~+lh

becomes

‘=*c::’1)’{-4’i:J+i[’-(’~+~+’’-)T+
}

L+@ cot y do (Bl)

Integration of equntion (Bl) by series expmsions gives
(for l#o)

1=6 1SW+*;

VAere

sin (1+ 1) ~
;In

lh
— 2 (E@’+ EZG8+E@s+ . . .)

sin —
2 1

tan ~
a= .. . . . . ... . . . .-

tan (21+1)$

and

Vi%en 1=0,

h6I=bi:(:-&–.&-3,386,880- “ “ “)

Consequently, the coefficientsfor the whd t’~m’ct i~ll
denoted bY ATJ, i%+i, Ns+i, . . ., are

-[

Sul(l+ l);
N, i~=+ in lh –2(EIG+ ESGS+E3GS+ . . .)

sin —
2

The coefficients in table 1.X, which are for 80 points, were
obtained from equation (332) using h = 2r/80. By usc of
other values of h in cquat ion (B!2), the coefficients for dif-
ferent point spaciuge cnn be obtaimd. Because of the sym-
metry of the coefficients, only half of them need be computed.
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‘ITABLEI—OUTLINE FOR COMPUTATION OF ~

Line Ommtlon Remndce
. — .—

1 Assumea valueofk
2 Sinh(1
8 Co511(11
4 tanh (1)
~ Im A-Ire R

2Re A
x (4)

6 tan-l (5) (0) fs N express In degrees; -!W<A<(O”
7 WC (6)

s ‘rm :R:~ BJxg
9 “S&@m

h

9)!SX+6.;-w~+t%qw
10 (9)-(6) ;; L9:

u Nik3’)-’w
~ %&j, .

~ g$g
19 (16 + 2)
m

[i II

13 + 2)
m h + a)
22 14+3

8+4
z 15+4
25 tan-l (19) Exprt!min mdlnn$ -~W<~

m ton-l ql) ExPreMin mdlm%-fi(28)<~
q tmlh+ 21

#
~ ~-l
m t~-1 ) Ex res in radfarw snmc fiuutit and

&n *S@,+2r
26 t.!n-l (24) EX.~Wm~mdfans:smue mmdront and

E :TR:I%H ~ % ‘(*)]
jll~

~fltti$B y ‘w -@$)! M~tie?q@ P.(2x) –p,(#.) for mcwt
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TABLE II-OUTLINE FOR COMPUTATION OF BLADE COORDINATES

103

Remarkslime Opel-dim Line

40

4L

42

43

44

%’
47

48
49

50
6L
62
63
64

65

66
57
68
59

E
62
63
64

M
62
6i
03
W

3

n

Op?rotlen Remarks

Half- MS may be added Mix to these
lms~80 poInt9wtwreneeeemry

1

:
4
6
6
i
8

1:
11
12
13
M
la
16
17
Is

19

m
21
22

E
26
m
27

28
29
80
31

#
34
25
36

37

3S

39

Ad@ values or6 at.L.V
beginning at e--r

2 (1)
-60

gf-?k=w.

gy”+”

{1
10 +Sblb k
11 +OM31k
121+t.snhit

IntefTels A(I.U HI Cbnm in Re H(eie) to mske Ir&gmJs
rem see text

(Q k R6 fi(e[q(30)+-(40)

p)*

jbwd
-r

NOM be zems3cXIsline7 tebIeI
Lfslfne6, ta&leI

,siu& A)ielIne8JabIe
$’)

Must & ZI?M

~Wos#d6
-a’

!dWt b? zero

–(w)x@)
e (ml
(40}XC28)

M%)

147)LeE(e);must bare E(OQ
(eqtution (6.3),rehmce 1)

[49)k? (q

~-l (~)

~-l (14)
~+ (IfJ

(Im .I-rm B)x(16)–

$
2Re.-ix 17)-1-
(Im.4+ m B)x(18)+D

Esoress in mdisns some uoadrsmt

(ii% ~(% ad
D=-(IR A-Ire B) ten+ ~

K9)I+(WJ

(S3)is lm C’(#)
Obtained hem mschhw mlccdetbn using

coeElcientsin tabhs YIU ond IX
DbWmihmn dftleremxsbetweenECfi(e~q

m&pd!ie ns&g coeftidents C-O.
CormctimI for Im fi(d)ml

I+ow

(2P1+ (21

!diT’
+2 (25)

ObtsIn by matchingptentiel$

w-f-(w) (52) isZmfi(e~q
(67)-Owhen n-O

(Z3) k tbe dfetorted rebitg K@)

Omh tbew IIneswhenu=O

“-(+ (60) h M) In degrees
(2S)-(23) whenn-O

Espmse es a positireangle h degms

t%%’%.=”%H%RH%a
m9pectfveIy

(l)+(oo)+w-w

“%
j%& 06)Jnmf6

&o,sh,d
&tbls#&l
-r

EwWete by Simpson’srrde

E~daate by ceefliclentsLutsbles m

lIr#mte by medtciints in ~.bb?slT

y (08) de

jL9)d6
-r

TABLE HI-WHOLE-POINT COEFFICIENTS FOR SINE
IXTEGR.AL

TABLE IV—WHOLE-POINT COEFFICIEWE3 FOR COSINE
INTEGRAL

7
70

~~

–. 04241
-. 0s923
–.osm
–. 09009
–. Mm
–. Lom
–. 03178
–. lm3IT

o Lo xl

–_m!2m!2 -0.03727 o-mom
-.ofmi .Wa21

–.mlm -.CBWL .aw?o
–. LO170 -. Ows .02442
–. IMm6 -. 02wo .01620
–.0W309 –.04005 .oLm3
–.lufm -.01020 .0z4q
–.08%?2 -.02443
–. OWL -.W331 :%
–.oiws -.m .Imi97T

m 40 al

IMrm& 0.C524!2 U OmiT
.10423 .06i9i

-04wL . iksm .ml
.iEQ23 .10176 M&
.046il

:&% .04m
:0% .Om
. IOIT6 .0&3z Xg
.051is .04w
. KwL2 .0i9m .Uia21

401E4 m -170 w

ammo
–. OEn
–. m
–. 02443
–. Oulal
–. 04033
–. ala)
–. 05m
-. ml
–. 00797

0

acoxa
-.mam
---
~.2

-. 0.tm6
-. 02wu
~.

-. Mi97

10IZI

-- =7 -0.05242
–. LLn33

–. o1241 -. 051i8
–. Cd923 -. Ioln
–. 0t6TL –. 04%2
~. ~.

–. Klla –. a3m3
–. 05K8 –. 04241
–. 1o423 –. 0i939

am
.Wli9i
.Ca3L
.0548s

:Yii%!l
.01621
.02448
.Cm211
.Im21

am OxlSmm
.Lm2L
.Oam .0-1241
.02443
.Olm :$%
.L?LaM m5e&
.LY23M
.03408 . Iolio
. INN .05K8
.00i97 .UMn

0.05242
.10433
.051is
. LOli6

X&
.ms22
.04241
.0i936

I

T.iBLE V—H.$LF-POINT COEFFICIENTS FOR SINE
INTEGRAL

TABLE VI-HALF-PO~TT COEFFICIENTS FOR C091NE
INTEGRAL

--k!= m 80

-a O!ML9-o. 01S62
-.05231 –. m554
-. OmLl –. Olim
-.03199 –. m2Q
-. OXai –. 0K39
-. Om35 –. In9as
-.025K –. w
-. Omw –. 025m
-.02491 –. 0LLS9
-. 0.t9vL –. 02L92
-. 024L9 –. OL012
-. CPL754–. m812
~uz?& ~~

-. 0zm3 –: m’MII
-. O’L352 –. Ollnl
-. 0z19 -. Ca4Lo
-. IMII1 –. @ra5
–. 01$91 –. OozM
–. Osst –. m200

40 a 10

-a ow
–. 03554
–. mim
–. m4L
–. m539
–-02ms
–. m30s
–. 0z3m
–. mlw
–. 02192
–. 01002
–. 01.slfl
–. m
–. Ol$zl
–. mll
–. mom
–. 0c4.lo
–. (K6L5
–. 0Q200
.-ao200

io

-aCa852
–.m-L4
–. M991
–.OLU1
-.02110
–. Lu3m
–. 0222a
–. 04w3
–. 02333
—.CMi54
–.02419
~.

~.

–. 03L36
–. 024s7
~.

–. owl

o

I
aOuloo -a omn

!4 :. ~&#
& –.Mm –: 04uL
2 –.ocnlo –. IEI19
2!4 –.0LC21 –. W353
3 –. ml -.02288
sl~ –.o1421 -. OLsus

–. 0w19 –. m-
if –. o1812 –.04n4
5 –. OLoo2 –. oz410
s!fi –. 02192 –. CM9L2
6 –. 0U89 -. OMl
61i ~iz& –. 05029
7 –. 02547
7.% :. ~ –. 05L35
8 –. 02387
8!$ –.03241 : puy

.OITOI
$i -. m554 –. 05$s1
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TABLE VII—COEFFICIENTS FOR COXJUGATE AT EVEN-
NUMBERED POINTS I TABLE ~iIII—COEFFICIENTS FOR CONJUGATE AT olI D.

NUhfBERED POINTS

I-L
;Io:wg
1

.OwMo
: .144119
4 .030944

.as4430
: .024277
7 .05Qa46
8 .02M72
9 .046.%M

10

L 020031
. oa6217
.aloao5
.02wQa
.Olsm
.024W33
.011449
. 02116Q
. W9743
. olao42

20

,.Ow%
.015415
.cnnlIo
. ola46
; Oc&l

:%&

. O07C861
30 40

. ooa449 o.mm

.OMM1 –. om55

.002708 –. Oalm

.004702 –. 00W3

.00K99 -. oola19

.00W16 –. 003216

.Oolmfl –. Oolm
; :&o& L. o&m

.c0x166 -.0001sl

,66
-

-a”ma449
-. Oma?o
–. 00-4243
–. 0m23a
–. oo6102
–. o11141
–. Owwd
–. 013146
–. Cwllo
–JM415

60

-o. WW39
–, 013542
–. 0GW46
–i c21169
–. o11449
–. 024096

:=

-. 03621i

m
-
-a 0200aI
-. 0452u4
-. 02s472
–. 05U346

2%X
–. 05C944
–, 144119
–. 0.w66
Y 636402
- -

10

1:O@&

. W2iw3

. o14a41

.0a7223

.012446

.022M0

.O1OWA

.Olwa

.0moo2

m

1016!377
.007694
.014242
.W356a
. 0121M
.03s562
.OImla
.0@i663
.0W495
.Wa33U

ao

r

40

Lmm3J O.omoo
.W3072-.ma227
.0aw7 –. 001312
.002349–. WIOM6
.oo40@a–. W!M41
.001667–. wm3s7
.a32e41 -.aMX13
.am’ase –. o@2349
.Cam –.oa5417
.000327 -. Omz

TABLE IX—COEFFICIENTS FOR CORRECTION “TO CON-
rJLTGATE

Ollolml””i”
-=-—-l—l—l—

0.011X161
;W&

.014222

.01a021

.011900

.OIIOU

.O1OM6

.00w’a

.M18669

a 06s014
.027406
.aX.S40
. Oowla
. CmWJa
. 036a%
. CQ4936
.W4466
. 004W2
.00W6

a ocmm
m25t&

.W?176

.mwm

.001488

.lxa16a

.Ocmzl
,0x1492
.000164

40

-0.000164
–. 000492
–. Owwl
-.001163
–. Oowa
-. C4m2E
–. cG2175
–. W2bn
–. cm#o
–. Ooa.mz

.

i)
.-.

66

-am
–. 003sa9
–. 009493
~.f4J6J

-. oow413
–.o121M
-. Owoa
-.014242
-. ooi694

00

-a 010077
-. m3xE?

:%?&
–,012446
–. 6a72m
-.014341
: ywfl

m

-a lnoa22
-.0.22467
–. 061462
-.029232
–. mwo
-.041111
-. lwm
–. 056626
-. ‘E3706
-. 41Z36.9

,::. . ..-


